贪心算法求解背包问题

问题:给定n个物品和一个容量为C的背包,物品i的重量为w 其价值为v。背包问题就是如何如何选择背包的物品,使装入背包中的物品的总价值是最大的,注意和0/1背包问题的区别,在背包问题中可以将某种物品的一部分装入背包,不可以重复装入。但是在0/1背包问题中,只有装入或者不装入两种结果。

#include<iostream>
using namespace std;
int KanpSack(int w[],int v[],int C) {
	double x[10] = {0};
	int maxValue = 0;
	int i = 0;
	do {
		x[i] = 1;
		maxValue+=v[i];
		C = C-w[i];
		i++;
	} while(w[i]<C);
//	for(int i =0 ; w[i]<C;i++){
//		x[i] = 1;
//		maxValue+=v[i];
//		C =C-w[i];
//	}
	x[i] = (double)C/w[i];
	maxValue+=x[i]*w[i];
	return maxValue;
}
int main() {
	int arrayw[10]= {9,8,7,6,5,4,3,2,1,0};
	int arrayv[10]= {9,8,7,6,5,4,3,2,1,0};
	int cw = 60;
	int rel =  KanpSack(arrayw,arrayv,cw);
	cout<<"这个背包的价值是:"<<rel<<endl;
	return 0;
}
这个代码简单的实现了背包问题的结果可以尽可能多的增加了背包的价值,从某种意义上讲,从最简单的方面实现了背包问题。首先满足价值和重量的递减排序,其次我们看到背包容量的大小就是60。其实所有的方法都可以在这个代码的基础之上加以修改,举个例子,当用户自己输入一组数据的时候由于是乱序的所以,我们可以利用一个简单的排序算法实现对用户输入的排序
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nihui123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值